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Abstract
Stability of the quantized Hall phases is studied in weakly coupled multilayers as a function of
the interlayer correlations controlled by the interlayer tunneling and by the random variation of
the well thicknesses. A strong enough interlayer disorder destroys the symmetry responsible for
the quantization of the Hall conductivity, resulting in the breakdown of the quantum Hall effect.
A clear difference between the dimensionalities of the metallic and insulating quantum Hall
phases is demonstrated. The sharpness of the quantized Hall steps obtained in the coupled
multilayers with different degrees of randomization was found consistent with the calculated
interlayer tunneling energies. The observed width of the transition between the quantized Hall
states in random multilayers is explained in terms of the local fluctuations of the electron
density.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Considerable interest has emerged recently in the physics of the
quantum Hall effect (QHE) in three-dimensional (3D) electron
systems [1–3], in part motivated by the significant advances
in the physics of graphene and few-layer graphite [4–6]. The
existence of the energy gap is an essential condition for the
quantization of the Hall conductors. Whenever the Fermi level
is placed in the gap the QHE can be displayed [7]. This
extends the QHE to 3D systems. The gaps in the energy spectra
of quasi-particles arise due to a periodicity which may be a
consequence of either atomic crystal structure or magnetic-
field-induced density waves. Thus, the integer QHE was found
and explained in periodic multilayer heterostructures [8] and in
anisotropic 3D crystals [9–12]; in the latter case the formation
of the density waves is highly favorable. Recently, the
possibility of Hall conduction quantization was also indicated
in isotropic 3D crystals [1]. In all of these cases the symmetry
of the initial electron system was lowered to achieve the
quantized Hall regime. A particularly interesting case is the
artificial periodic multilayer systems where tailoring of the

interlayer coupling allows examining theoretical predictions.
The lowering of the host crystal symmetry by imposing the
super-potential with a periodicity much larger than the lattice
constant permits us to observe the QHE in these 3D structures
in reasonably weak magnetic fields. Moreover, the interlayer
coherence of the artificial multilayers may be managed by a
random variation of the layer widths/compositions. In random
multilayers the breaking of the symmetry responsible for the
quantization of the Hall conductance destroys the QHE. In
such a case the stability of the quantized Hall phases may be
explored.

The central role of disorder in the quantization of the
Hall conductivity was recognized soon after the discovery of
the QHE [13]. The Anderson localization was found to be
responsible for the appearance of the quantized plateaus of the
Hall conductivity, while the transitions between the plateaus
are determined by the extended states at the center of the
Landau level (LL). However, whereas the disorder is vital for
the QHE, it is also responsible for a breakdown of the QHE:
a sufficiently strong disorder results in the disappearance of
the quantized Hall phases. The disorder-induced destruction of
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the QHE in the two-dimensional electron gas (2DEG) has been
extensively explored (see, for instance, [14, 15]). It is believed
that the quantization of the Hall conductivity is destroyed when
the disorder energy is large compared to the spacing between
LLs [16]. Moreover, in order to explain a transition from an
insulator at B = 0 (where all states are localized) to a quantum
Hall conductor at finite B (where extended states exist below
the Fermi level) the concept of the extended states flowing
up due to disorder was introduced [17, 18]. The situation is
somewhat different for 3D systems where at zero magnetic
field, depending on the relation between the disorder energy
(�) and the interlayer tunneling energy (tz), the system may be
in either an insulating or metallic state. In the latter case the
LLs do not flow up, while they merge into a continuum with
the decreasing magnetic field.

Furthermore, the successive magnetic-field-induced metal-
to-insulator transitions which take place in the quantized Hall
systems present the important case of the quantum phase tran-
sitions [19] where the metallic phase associated with the width
of the interplateau range reveals the critical behavior [20, 21].
According to the theory [22], the interplateau width concerns
a measure for the fraction of the extended states which con-
tribute to the conduction at finite temperature. In 2DEG a sin-
gle extended electron state results in a very sharp transition
between the plateaus; the width of the transition vanishes as
a power law with temperature [23, 24]. In an uncoupled pe-
riodic multilayer system each LL is additionally degenerated
with the degeneracy equal to the number of layers (N). The
interlayer coupling breaks this degeneracy, resulting in a finite
width of the extended state even at zero temperature—Landau
band (LB). Consequently, in coupled multilayers the interlayer
tunneling plays an essential role in determination of the width
of the plateau–plateau transitions and it can considerably influ-
ence the critical behavior of the metallic phase.

Besides the references cited above the magnetotransport
properties of the multilayer electron systems in a strong
magnetic field were also studied in [25–27] where the effect
of the suppression of the interlayer charge transfer by in-plane
field was found. However, as far as we know, in neither
work were the influences of the interlayer tunneling and the
interlayer correlations on the formation of the quantized Hall
phases explored and that is the subject of this work.

This paper is composed as follows: samples, the
experimental set-up and the method are all described in
section 2. Theoretical considerations are presented in section 3.
In section 4 the obtained results are analyzed and discussed.
Conclusions are given in section 5.

2. Experimental details and method

In the multilayer samples reported here the width of the
extended state was tuned by both the variation of the barrier
thicknesses in periodic multilayers and by random variation
of the wells. This allowed us to investigate the problem of
the formation of the extended states in the quantized Hall
regime and the conditions for the breakdown of the QHE in
regimes not achievable in natural multilayer systems. It ought
to be mentioned that recently the influence of the in-plane local

Figure 1. Structure of the intentionally disordered
(GaAs)m(Al0.18Ga0.82As)l multilayers.

variation of potential landscape on the transition between QHE
states was studied in [28]. In our experiments the role of both
the in-plane and the interlayer disorder on the width of the
QHE transition was explored in a multilayer electron system;
herewith the strength of the interlayer disorder was controlled
during the sample growth.

The samples under investigation were (GaAs)m(AlGaAs)l

multilayer heterostructures. The multilayers were grown
by molecular beam epitaxy at the same growth conditions
on semi-insulating GaAs substrates. They consisted of
GaAs undoped wells with thickness m monolayers (ML) and
Al0.18Ga0.82As barriers with thicknesses l ML. Two types of
multilayer structures were studied: (i) uncoupled disordered
multi-quantum wells (MQW) with barrier widths l = 65 and
100 MLs and (ii) weakly coupled disordered superlattices (SL)
with barrier widths l = 15 MLs. The barriers of both the SLs
and MQWs were n-doped with Si in the middle, leaving on
both sides the undoped spacers with thickness 3 ML. Thus,
the only difference between these SLs and MQWs was in
the tunneling rate. In addition, in order to examine the role
of electron mobility, the MQW structures were grown with
spacers of 30 ML (high-mobility MQWs). In all cases the
randomization was achieved by a random variation of the layer
thickness m around the nominal value m = 65 ML according
to a probability distribution which is obtained from a Gaussian
probability density for the electron energy in the isolated well.
The Gaussian is centered at the value of the electron energy
corresponding to the 65 ML well and it is characterized by its
full width at half-maximum �0 (disorder energy). Unavoidable
monolayer fluctuations cause �0 = 0.23 meV even in
the nominally periodic (GaAs)65(Al0.18Ga0.82As)l multilayer
structures. The schematic structure of the random multilayers
studied here is shown in figure 1.

The effect of the disorder in multilayer semiconductor
structures strongly depends on screening. In weakly coupled
random multilayers the screened random potential may be
calculated as follows [29]:

� = �0

1 + 2πe2ρ0d/ε
(1)

where the unscreened (as-grown) disorder energy �0 is
reduced by the factor α = 1 + 2πe2ρ0d/ε, with ρ0, d and ε
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Table 1. Characteristic parameters of the random
(GaAs)m(Al0.18Ga0.82As)l multilayer structures measured at
T = 1.6 K.

Sample
l
(ML) N

�0

(meV)
EF

(meV)
n2D

(×1011 cm−2)
μ

(cm2 V−1s−1)

MQW1 100 20 0.23 24.8 8.4 7 500
MQW2 65 25 7.7 19.0 4.7 13 000
MQW3 65 25 7.7 19.0 4.7 12 000
MQW4 65 25 10.2 13.0 3.7 19 000
MQW5 65 25 14.8 11.0 3.2 9 500
MQW6a 100 20 0.23 22.6 6.6 72 000
MQW7a 100 20 2.6 22.0 4.7 54 000
MQW8a 100 20 7.7 22.0 6.6 40 000
MQW9a 100 20 14.8 21.5 6.5 75 000
SL1 15 25 0.23 10.1 3.3 7 000
SL2 15 25 0.95 9.6 3.2 5 700
SL3 15 25 2.6 9.4 3.1 5 100
SL4 15 25 5.2 8.0 2.7 6 500
SL5 15 25 7.7 8.5 2.9 5 900
SL6 15 25 9.4 8.3 2.6 6 600
SL7 15 25 10.2 7.5 2.3 3 370
SL8 15 25 14.8 6.7 2.2 4 100

a The multilayers with spacers 30 ML (high-mobility MQW).

being the density of states in a subband, the interlayer distance
and the dielectric constant, respectively. The validity of this
formula was quantitatively attested for disordered superlattices
in [30]. The calculated screening factors α for the MQW and
SL studied here are 8.2 (10.2 for the MQWs with the 100 ML
barriers) and 5.5, respectively.

The transport measurements parallel to the layers were
performed with a Perkin-Elmer 7280 lock-in amplifier at the
temperature T = 1.6 K, frequency 1 Hz and current 10 μA
in the samples patterned into Hall bars. The characteristic
parameters of the studied structures are presented in table 1
where the Fermi energies were determined by the fits of the
Shubnikov–de Haas oscillations, while the sheet densities were
obtained from the QHE.

The magneto-resistance traces measured in one of the low-
mobility uncoupled periodic multilayers (MQW1) are depicted
in figures 2(a) and (b). At high magnetic fields the Hall
resistivity measured in the periodic MQW develops clear
plateaus. The plateau resistance at the filling factor ν can be
calculated as Rxy = h/e2νNQHE. This expression assumes
a parallel connection of NQHE quantum wells in a multilayer
structure. All 20 quantum wells contributed to the QHE in this
MQW.

In order to quantitatively examine the influence of the
interlayer tunneling on the transition between QHE states we
determined the width of the transition between the plateaus
ν and ν ′ = ν + 2(δBνν′ ). We found that in the random
multilayers a direct analysis of the plateau–plateau transition
using the data of the Hall resistance is more appropriate
than the method adopted for the 2DEG in [23] (where the
derivative of the longitudinal magneto-resistance was used
to extract the data of interest). Therefore, the derivatives
of the Hall resistances ( dRx y

dB ) were calculated and the peaks
corresponding to the plateau–plateau transitional regions were
associated with the corresponding interplateau widths. The
dependences of these derivatives on the magnetic field are

Figure 2. Longitudinal (a) and Hall (b) magneto-resistances
measured at T = 1.6 K in the uncoupled periodic
(GaAs)65(Al0.18Ga0.82As)100 multi-quantum well heterostructure
(MQW). The numbers indicate the filling factors of corresponding
plateaus. The derivative dRxy/dB together with the best fit (dark
gray (red online) line) are also shown in panel (b).

shown in figure 2(b). The interplateau widths were related to
the corresponding widths of the Gaussian lines fitting the dRx y

dB
dependences [31, 32]. The fit is shown by the gray line (red
online) in figure 2(b). A correspondence between the widths
measured in tesla and in eV is determined by the relation
δE(eV) = h̄e

m (N − 1
2 )δBνν′ (T ), where N = ν ′/2 is the

number of the corresponding Landau level. The interplateau
broadening thus measured in the low-mobility MQW sets a
reference for the corresponding broadenings measured in the
weakly coupled random multilayers consisted of the same as
in the MQW wells, where the width of the extended state is
determined by the interlayer tunneling and/or by the interlayer
disorder.

3. Theoretical description

The random potential produced by the disorder described
previously provides a probe to measure the robustness of the
quantized Hall state in coupled multilayer systems. On the
one hand, the coherent interlayer coupling is responsible for
a finite width LB in the periodic case; therefore one could
expect the plateau–plateau transition to become sharper as the
vertical disorder increases and so the tunneling contribution
diminishes. However, on the other hand, different well
thicknesses lead to different occupation of the quantum
wells. For this reason a smoothing of the quantized Hall
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plateaus occurs and then a broadening of the interplateau
distance, with the increasing interlayer disorder, must be
expected. Thus in the random coupled multilayers both the
interlayer tunneling and the interlayer disorder contribute to the
interplateau broadening. The effect of the interlayer disorder
on the transition between the plateaus ν and ν ′(δBνν′) may be
attributed to the interlayer fluctuations of sheet electron density
(δn2D) as δBνν′ = h

eν∗ δn2D, where ν∗ = ν ′ − 1 corresponds to
a critical filling factor of the quantized Hall conductor phase of
random multilayers related to the middle of the corresponding
half-filled LB.

The disorder-induced interlayer fluctuations of sheet
electron density may be estimated as δn2D � n2D

�
EF

. Thus, the
interplateau broadening in energy, caused by these fluctuations,
can be written as

δ � π h̄2

m∗
n2D

EF
�. (2)

In the SLs, the contribution of the coherent tunneling has been
estimated via an interlayer tunneling energy (tz) accounting
directly for the energy broadening of the LB. The calculation
of tz has been carried out using the transfer matrix technique,
modeling the multilayer structure by a one-dimensional
Kronig–Penney potential. The relevant parameters used for
the simulation are as follows: effective mass in barriers
mb = 0.083m0, effective mass in wells mw = 0.067m0,
and conduction band offset V = 124 meV and 3.0 Å for
the monolayer width. For a given vertical disorder several
different realizations of the system have been considered. Each
sequence includes 25 periods with constant barriers of 15 ML
and wells with different widths according to a probability
distribution obtained from a Gaussian distribution for the
electron energy in the isolated well. The Gaussian is centered
at the value of the electron energy corresponding to the 65 ML
well and its half-width is the disorder energy �. Since there is
no straightforward method to estimate the coupling strength in
terms of energy in the intentionally disordered multilayers, a
reasonable estimation can be done by studying the electronic
localization length as a function of the energy. One would
expect the interlayer coupling energy tz to be proportional to
the energy interval WE where the vertical localization length
of the electrons is larger than a given threshold length Lth,
which we chose to be 43.5 nm, corresponding to the average
length of the composition well–barrier–well; that is, we assume
that only states whose localization length covers a couple
of wells can contribute to coherent tunneling. Nevertheless
since the localization length within WE is not constant (not
all energies give the same contribution to tunneling), it seems
reasonable to include a correction factor accounting for this
dependence. The interlayer coupling energy for each sequence
was estimated as tz = (	eff

L )WE, where the correction factor
is the ratio between the effective localization length 	eff of
the electrons within WE and the total length of the system L.
When the disorder goes to zero and the length of the system
grows, the effective localization length tends to equal the total
length of the system and the interval WE will converge to the
miniband width, which is the limiting value one would expect
for the interlayer coupling energy for the infinite periodic
structure; the interlayer tunneling energy of the periodic SL

Figure 3. Longitudinal (a) and Hall (b) magneto-resistances
measured at T = 1.6 K in the random weakly coupled
(GaAs)m(Al0.18Ga0.82As)15 multilayer structures (SLs) with different
disorder strengths. The insets in panels (a) and (b) show the
longitudinal resistance Rxx at the minimum corresponding to ν = 2
measured in differently disordered superlattices and the number of
quantum wells contributing to the QHE, respectively.

was calculated to be tz = 1.5 meV. The effective localization
length 	eff for the disordered sequences is obtained from
the transmission efficiency Teff (the area enclosed by the
transmission coefficient per energy unit) inside WE, using
the well-known Kirkman and Pendry formula: 	eff =
−2L/ log(Teff). The localization length calculated in this way
was found in good agreement with the one experimentally
determined in intentionally disordered SLs in [33].

Hence, the total interplateau width, and then the
dependence of the interplateau distance as a function of
disorder, can be estimated as a sum of the interlayer tunneling
and the interlayer disorder contributions plus the broadening
due to the in-layer scattering potential (
):

δE = tz + δ + 
. (3)

4. Results and discussion

The dependences of the longitudinal and Hall resistances on
the magnetic field measured in some of the weakly coupled
multilayers with different strengths of the interlayer disorder
are shown in figure 3. The quantized plateaus were found at
the filling factors ν = 2 and 4. Contrary to the MQW the
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Figure 4. Dependence of the areal densities obtained by the ν = 2
(closed circles) plateaus and of the Fermi energies (open triangles)
measured by the Shubnikov–de Haas oscillations measured in
weakly coupled multilayers (SLs) as functions of the disorder
energy; the line was calculated as explained in the text.

high-index plateaus were not observed in the SLs because no
gaps were opened in the electron energy spectrum at weak
magnetic field (h̄ωc � tz). The following consequences
of the intentional disorder can be distinguished: with the
increasing disorder (i) the minimum longitudinal resistances
corresponding to the quantized Hall phase at ν = 2 enhance
(shown in the inset to figure 3(a)) and (ii) more wells become
empty (the decreasing NQHE is shown in the inset to figure 3(b))
and the electron concentration decreases; this is due to the
redistribution of the electrons over the random potential (some
of the wells become empty while the Fermi energy decreases
with increasing disorder). While the fluctuations of the
local (interlayer) electron density cause both the broadening
of the interplateau transition and the increase of minimum
longitudinal resistance. The quantized Hall plateau at ν = 4
disappears in the most disordered sample. In that case the
disorder energy � � 0.5�ωc which confirms the Thouless
criterion for breakdown of the QHE [16].

The dependences of the areal electron density on the
disorder energy obtained from the ν = 2 plateaus in SLs with
different disorder strengths are shown in figure 4. The observed
decreasing areal density is caused by the redistribution of the
electrons over the random potential (already mentioned above)
which leads to a lowering of the Fermi energy EF = EF0 − �,
where EF0 is the Fermi energy in an unperturbed sample [34].
Consequently, the areal density is n2D = n0(1 − �/EF0). A
good fit to the experimental results was obtained with the value
of the Fermi energy EF0 = 9.6 meV. As expected for the
two-dimensional electrons, the variation of the areal density
well corresponds to the change of the Fermi energy determined
by the low-field magneto-resistance oscillations. The ratio
n2D/EF determined by these data was used in the calculations
of the broadening energy δ. Hence, the insulating phase
of the weakly coupled multilayers shows a two-dimensional
behavior.

Additionally to the different number of plateaus found
in the MQWs and the SLs, their different behaviors are
also manifested by the different temperature dependences

Figure 5. Interplateau widths measured at different temperatures
(a) in the periodic (MQW1) and random (MQW5) isolated
multilayers and (b) in the periodic (SL1) and random (SL8) weakly
coupled multilayers. The data obtained in the periodic and random
structures are shown by closed and open circles, respectively. The
lines in (a) were calculated as explained in the text while the lines
in (b) are guides for the eyes.

of the interplateau broadenings depicted in figures 5((a)
and (b)). According to the scaling theory [22] the interplateau
broadening changes with temperature as T a with the exponent
a = p/2μ, where p and μ are the exponents in the temperature
dependences of the elastic time and of the localization length,
respectively. This temperature divergence points to a single
energy of the extended state corresponding to the LL. Indeed,
as shown in figure 5(a) the interplateau broadening of the
MQW reveals the predicted temperature dependence with a =
0.42 as in [23]. This shows the two-dimensional character
of the metallic system formed in the quantized Hall phase
of the MQW. At the same time the width of the interplateau
broadening of the periodic SL depicted in figure 5(b) behaves
as a linear function of the temperature. The value of the
interplateau width extrapolated to zero temperature indicates
the tunneling energy plus the in-layer scattering potential 
.
The localization length exponent was calculated in weakly
coupled multilayers in [35–39] as μ = 1.4–1.7. Using the
average localization length exponent μ = 1.55 together with
the experimental value a = 1 determined in the SL, we found
the elastic time exponent p ≈ 3 as due to the electron–
electron interaction in the bulk, which is in good agreement
with the value obtained by the weak localization measurements
in similar GaAs/AlGaAs SLs in [40]. Therefore, contrary to
the 2DEG the metallic quantized Hall phase of the coupled
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multilayers reveals a three-dimensional character. As shown
in figure 5(a) and (b), where open circles correspond to the
data obtained in the random MQW and SL, respectively, the
dimensionality of the metallic phase does not change with the
disorder.

It is worth adding that the 3D–2D transition induced by
an in-plane magnetic field was observed in [25–27]. In this
case the dimensionality of the electron system was lowered
because the in-plane magnetic field decreased the overlap
of the electron wavefunctions of adjacent quantum wells,
consequently reducing the interlayer coupling. In contrast,
we demonstrated the alteration of the dimensionality of the
quantized Hall phases which takes place with the change of
the magnetic field perpendicular to the layers.

Thus we can state that the influence of the interlayer
tunneling on formation of the quantized Hall states is
manifested by the following: (i) the number of the plateaus
observed in MQWs and in SLs is different (no more than two
plateaus were observed in SLs, while much more of them were
found in MQWs) and (ii) different temperature dependences
of the transitional energies, consistent with the theory, were
observed in MQWs and SLs.

The interplateau widths obtained in SLs are demonstrated
in figure 6(a) as a function of the effective screened random
potential. In qualitative agreement with the theory, the
interplateau width decreases with the increasing interlayer
disorder following the calculated tendency of the tunneling
rate. Then, after a certain disorder strength the interplateau
transition begins to broaden and the interlayer disorder
dominates. The interplateau widths obtained in MQW
structures are also shown in figure 6(b). The mobility does
not seem to affect the interplateau widths measured in the
MQW structures (the data shown by closed and open triangles
were obtained in low- and high-mobility MQWs, respectively).
This indicates the dominant contribution of the short-range
scattering to the interplateau width measured in the MQWs.

The tunneling energy (tz) and the broadening energy
(δ + 
) calculated as functions of the disorder energy are
shown in figure 6(a) by the vertical black bars and by the
solid line, respectively. The total estimated dependence of
the interplateau width (δE) is shown by the vertical gray
(red online) bars. When calculating the total interplateau
broadening the contribution of the broadening due to the in-
layer scattering potential (
 = 0.8 meV) independent of
the interlayer disorder was added to obtain the best fitting to
the experimental data. On the other hand, the interplateau
broadening of the random isolated MQW, where tz = 0, is
determined by the broadening energy δ + 
. The data shown
in figure 6(b) reveal the same as in the disordered SLs tendency
of increasing interplateau broadening with the disorder energy
� predicted by equation (2).

Thus, we affirm good agreement obtained in both the SLs
and the MQWs in the range of strong interlayer disorder (� >

1 meV). At smaller disorder the experimental data reveal an
extra contribution. It is possible that the enhanced width of the
interplateau transition observed in weakly disordered SLs and
MQWs may be caused by the disorder-induced spin-assisted
interlayer tunneling shown to result in the intermediate metallic

Figure 6. Interplateau widths δE obtained in the random
(GaAs)m(Al0.18Ga0.82As)15 multilayer structures with different
disorder strengths: (a) SLs for ν = 2 (closed circles) and (b) low- and
high-mobility MQWs for ν = 4 (open and closed triangles,
respectively). The vertical black bars mark the intervals including the
calculated interlayer coupling energies tz for the SLs, considering
100 different realizations of the system for each value of the disorder,
while the solid lines demonstrate the disorder-induced interplateau
broadening δ calculated in SLs and MQWs. The total dependence of
the interplateau width on disorder energy calculated according to
equation (3) is shown by the dark gray (red online) vertical bars (b).

phase separating the metallic and insulating quantized Hall
phases [35]. According to the theory, such a metallic phase
occurs even for an infinitesimal interlayer tunneling resulting
in broader transitions between quantized Hall plateaus even
at zero temperature. The interlayer disorder destroys the
interlayer coherence causing the observed agreement between
the experimental and calculated data.

It ought to be mentioned that the question of the
critical behavior of the quantized Hall system is of
fundamental importance to understand the quantum phase
transitions [41, 19]. However, the experimental data published
so far reveal different critical exponents a which questions
the universality of the theory (see the discussion in [19] and
references therein). In fact, as was recently demonstrated [19],
the variety of critical exponents observed experimentally may
relate to different percolation processes involving dephasing
and quantum tunneling between the quantum Hall droplets.
The phase diagram thus developed explains the different
exponents observed. We did not find a considerable effect of
the mobility on the critical exponent a, similar to that observed
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in [24]. Moreover, our data do not reveal any significant change
of the critical exponent with the variation of the interlayer
disorder. This implies a universal scaling relation for the
magneto-resistance and conductance ruled by the quantum
percolation predicted in [22] and observed in [23].

5. Conclusion

The effects of the interlayer tunneling and disorder on the
quantum Hall effect were studied in multilayers. The tunneling
was found to affect the temperature dependences of the
interplateau transitional energies which were observed to be
different in the isolated and coupled multilayers. This implies
a different critical behavior of the corresponding metallic
phases. In the coupled multilayers the quantized Hall phases
reveal different dimensionalities: the insulating phase is two-
dimensional, as in the 2DEG, while the metallic phase is three-
dimensional. The observed modification of the quantized Hall
phases agrees with the phase diagram of the 3D quantized
Hall conductors developed in [38, 35]. The important role
of the electron density fluctuations in determination of the
transition between the quantized Hall phases was established.
The possible signature of the spin-assisted interlayer tunneling
predicted in multilayers in [35] is indicated.
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Schlachetzki A 1998 Physica B 249–251 873
[26] Nachtwei G, Weber A, Künzel H, Böttcher J and
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